Skip to content

modules.qwen2_moe.modeling_qwen2_moe_flax

FlaxQwen2MoeAttention

Bases: BaseJAXAttentionModule

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
class FlaxQwen2MoeAttention(BaseJAXAttentionModule):
    config: Qwen2MoeConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]] = None

    def setup(self):
        config = self.config
        self.hidden_size = config.hidden_size
        self.head_dim = self.config.hidden_size // self.config.num_attention_heads
        self.num_key_value_groups = self.config.num_attention_heads // self.config.num_key_value_heads

        if self.num_key_value_groups == 1:
            assert self.config.num_attention_heads == self.config.num_key_value_heads
        self.q_proj = Linear(
            config.num_attention_heads * self.head_dim,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=True,
            kernel_init=jax.nn.initializers.normal(
                self.config.initializer_range
            ),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )
        self.k_proj = Linear(
            config.num_key_value_heads * self.head_dim,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=True,
            kernel_init=jax.nn.initializers.normal(
                self.config.initializer_range
            ),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )
        self.v_proj = Linear(
            config.num_key_value_heads * self.head_dim,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=True,
            kernel_init=jax.nn.initializers.normal(
                self.config.initializer_range
            ),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )
        self.o_proj = Linear(
            config.hidden_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(
                self.config.initializer_range
            ),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )

        self.rotary = FlaxQwen2MoeEmbedding(self.dtype)
        self.attention_performer = AttentionModule(
            use_sharding_constraint=self.config.use_sharding_constraint,
            block_k_major=self.config.block_k_major,
            block_b=self.config.block_b,
            block_q=self.config.block_q,
            block_k=self.config.block_k,
            block_q_major_dkv=self.config.block_q_major_dkv,
            block_k_major_dkv=self.config.block_k_major_dkv,
            block_k_major_dq=self.config.block_k_major_dq,
            block_k_dkv=self.config.block_k_dkv,
            block_q_dkv=self.config.block_q_dkv,
            block_q_dq=self.config.block_q_dq,
            block_k_dq=self.config.block_k_dq,
            num_attention_heads=self.config.num_attention_heads,
            attention_dropout=self.config.attention_dropout,
            head_dims=self.head_dim,
            attention_partition_spec=self.config.attention_partition_spec,
            shard_attention_computation=self.config.shard_attention_computation,
            precision=self.precision,
            force_float32_tpu=True,
            attn_mechanism=self.config.attn_mechanism,
            dtype=self.dtype,
            bias_partition_spec=self.config.bias_partition_spec,
            key_partition_spec=self.config.key_partition_spec,
            query_partition_spec=self.config.query_partition_spec,
            generation_query_partition_spec=self.config.generation_query_partition_spec,
            generation_bias_partition_spec=self.config.generation_bias_partition_spec,
            generation_attention_partition_spec=self.config.generation_attention_partition_spec,
            value_partition_spec=self.config.value_partition_spec,
            scan_ring_attention=self.config.scan_ring_attention,
            mesh=self.config.jax_mesh(),
            sm_scale=1 / math.sqrt(self.head_dim),
            axis_name=self.config.attention_axis_name,
            backward_pass_impl=self.config.flash_attention_backward_pass_impl
        )
        self.resid_dropout = flax.linen.Dropout(rate=config.attention_dropout)

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))

    @staticmethod
    def _transpose_sequence_head(query, key, value):
        """
        The _transpose_sequence_head function transposes the query, key and value matrices.

        :param query: Get the attention weights for each of the heads
        :param key: Determine the number of heads
        :param value: Store the values of the input
        :return: The transpose of the query, key and value matrices

        """
        return jnp.transpose(query, (0, 2, 1, 3)), jnp.transpose(key, (0, 2, 1, 3)), jnp.transpose(value, (0, 2, 1, 3))

    def apply_rotary(self, batch_size, sequence_length, query, key, value, freq_cis, position_ids):
        """
        The apply_rotary function is a modified version of the apply_attention function in the BertModel class.
        The main difference is that it takes in an additional argument, freq_cis, which are used to calculate
        the rotary attention weights. The other differences are minor and mostly related to reshaping tensors.

        :param self: Access variables that belong to the class
        :param batch_size: Reshape the query, key and value tensors
        :param sequence_length: Reshape the query, key and value tensors
        :param query: Calculate the attention weights
        :param key: Calculate the attention
        :param value: Compute the attention weights
        :param freq_cis: Calculate the frequency of each word in the vocabulary
        :param position_ids: Identify the position of each token in the sequence
        :return: A tuple of 3 tensors: query, key and value

        """
        query = query.reshape(batch_size, sequence_length, self.config.num_attention_heads, self.head_dim)
        key = key.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)
        value = value.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)

        query, key, value = self._transpose_sequence_head(query, key, value)
        query, key = self.rotary(
            position_ids=position_ids, query=query, key=key, freq_cis=freq_cis
        )
        key = repeat_kv_bnsh(key, self.num_key_value_groups)
        value = repeat_kv_bnsh(value, self.num_key_value_groups)
        return self._transpose_sequence_head(query, key, value)

    def __call__(
            self,
            hidden_states: chex.Array,
            freq_cis: Tuple[chex.Array, chex.Array],
            attention_mask: chex.Array,
            position_ids: chex.Array,
            causal_mask: chex.Array,
            segment_ids: Optional[chex.Array] = None,
            deterministic: bool = True,
            init_cache: bool = False,
            output_attentions: bool = False,
            fcm_mask=None,
    ):
        """

        The __call__ function is the main function of a JAX module. It defines how the module behaves when called
        with inputs. The __call__ function can be thought of as a "forward pass" through the model,
        and it should return all outputs that are needed for training or inference.

        :param self: Access variables that belong to the class
        :param hidden_states: chex.Array: Pass the hidden states of the previous layer
        :param freq_cis: Tuple[chex.Array, chex.Array],: Pass in the frequency coefficients for each position
        :param attention_mask: chex.Array: Mask out certain tokens in the input sequence
        :param position_ids: chex.Array: Determine the position of each token in a sequence
        :param causal_mask: chex.Array: Mask out the future tokens in the decoder
        :param deterministic: bool: Determine whether to use dropout or not
        :param init_cache: bool: Initialize the cache
        :param output_attentions: bool: Determine whether to return the attention weights or not
        :param fcm_mask: Mask out the attention weights between the input and output tokens
        :param : Determine if the attention is causal or not
        :return: A tuple of two arrays

        """
        batch_size, sequence_length = hidden_states.shape[:2]
        query_states, key_states, value_states = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(
            hidden_states)

        query_states = query_states.reshape(batch_size, sequence_length, self.config.num_attention_heads, self.head_dim)
        key_states = key_states.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)
        value_states = value_states.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)

        query_states, key_states, value_states = self.apply_rotary(
            query=query_states,
            key=key_states,
            value=value_states,
            position_ids=position_ids,
            freq_cis=freq_cis,
            batch_size=batch_size,
            sequence_length=sequence_length
        )

        assert_msg = (
            "num_attention_heads repeat wont work likely\n"
            f"INFO :\n\trepeat_kv_bnsh Used with num_key_value_groups = {self.num_key_value_groups}\n\t"
            f"NH : {self.config.num_attention_heads} KVH : {self.config.num_attention_heads}"
        )

        assert query_states.shape[-2] == self.config.num_attention_heads, assert_msg
        assert key_states.shape[-2] == self.config.num_attention_heads, assert_msg
        assert value_states.shape[-2] == self.config.num_attention_heads, assert_msg

        query_length, key_length = query_states.shape[1], key_states.shape[1]

        if self.has_variable("cache", "cached_key"):
            mask_shift = self.variables["cache"]["cache_index"]
            max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
            causal_mask = lax.dynamic_slice(
                causal_mask, (0, 0, mask_shift, 0), (1, 1,
                                                     query_length, max_decoder_length)
            )
        else:
            causal_mask = causal_mask[:, :, :query_length, :key_length]

        batch_size = hidden_states.shape[0]
        causal_mask = jnp.broadcast_to(
            causal_mask, (batch_size,) + causal_mask.shape[1:])
        attention_mask = jnp.broadcast_to(jnp.expand_dims(
            attention_mask, axis=(-3, -2)), causal_mask.shape)
        attention_mask = combine_masks(attention_mask, causal_mask, fcm_mask)
        if attention_mask.ndim == 2:
            attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))

        dropout_rng = None

        if not deterministic and self.config.attention_dropout > 0.0:
            dropout_rng = self.make_rng("dropout")

        if self.has_variable("cache", "cached_key") or init_cache:
            key_states, value_states, attention_mask = self._concatenate_to_cache(
                key_states,
                value_states,
                query_states,
                attention_mask
            )

        if self.config.use_sharding_constraint:
            query_states = with_sharding_constraint(
                query_states,
                jax.sharding.PartitionSpec(("dp", "fsdp"), "sp" if query_states.shape[1] != 1 else None, "tp", None)
            )
            key_states = with_sharding_constraint(key_states,
                                                  jax.sharding.PartitionSpec(("dp", "fsdp"), "sp", "tp", None))
            value_states = with_sharding_constraint(value_states,
                                                    jax.sharding.PartitionSpec(("dp", "fsdp"), "sp", "tp", None))
        attention_bias = lax.select(
            attention_mask > 0,
            jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
            jnp.full(attention_mask.shape, jnp.finfo(
                self.dtype).min).astype(self.dtype),
        )
        query_length, key_length = query_states.shape[1], key_states.shape[1]

        attentions = self.attention_performer.__call__(
            query_states=query_states,
            key_states=key_states,
            value_states=value_states,
            bias=attention_bias,
            attention_mask=attention_mask,
            causal=True,
            dropout_rng=dropout_rng,
            deterministic=deterministic,
            query_sequence_length=query_length,
            key_value_sequence_length=key_length,
            uses_cache=self.has_variable("cache", "cached_key") or init_cache,
            segment_ids=segment_ids,
            causal_mask=causal_mask
        )


        attn_output = self._merge_heads(attentions.attention_outputs)
        if self.config.shard_attention_computation:
            attn_output = with_sharding_constraint(
                attn_output, PartitionSpec(
                    ("dp", "fsdp"),
                    "sp" if attn_output.shape[1] != 1 else None,
                    "tp"
                )
            )
        attn_output = self.o_proj(attn_output)

        attn_output = self.resid_dropout(
            attn_output, deterministic=deterministic)
        outputs = (
            attn_output, attentions.attention_weights
        ) if output_attentions else (
            attn_output,
        )
        return outputs

__call__(hidden_states, freq_cis, attention_mask, position_ids, causal_mask, segment_ids=None, deterministic=True, init_cache=False, output_attentions=False, fcm_mask=None)

The call function is the main function of a JAX module. It defines how the module behaves when called with inputs. The call function can be thought of as a "forward pass" through the model, and it should return all outputs that are needed for training or inference.

Parameters:

Name Type Description Default
self

Access variables that belong to the class

required
hidden_states Array

chex.Array: Pass the hidden states of the previous layer

required
freq_cis Tuple[Array, Array]

Tuple[chex.Array, chex.Array],: Pass in the frequency coefficients for each position

required
attention_mask Array

chex.Array: Mask out certain tokens in the input sequence

required
position_ids Array

chex.Array: Determine the position of each token in a sequence

required
causal_mask Array

chex.Array: Mask out the future tokens in the decoder

required
deterministic bool

bool: Determine whether to use dropout or not

True
init_cache bool

bool: Initialize the cache

False
output_attentions bool

bool: Determine whether to return the attention weights or not

False
fcm_mask

Mask out the attention weights between the input and output tokens

None

Determine if the attention is causal or not

required

Returns:

Type Description

A tuple of two arrays

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def __call__(
        self,
        hidden_states: chex.Array,
        freq_cis: Tuple[chex.Array, chex.Array],
        attention_mask: chex.Array,
        position_ids: chex.Array,
        causal_mask: chex.Array,
        segment_ids: Optional[chex.Array] = None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        fcm_mask=None,
):
    """

    The __call__ function is the main function of a JAX module. It defines how the module behaves when called
    with inputs. The __call__ function can be thought of as a "forward pass" through the model,
    and it should return all outputs that are needed for training or inference.

    :param self: Access variables that belong to the class
    :param hidden_states: chex.Array: Pass the hidden states of the previous layer
    :param freq_cis: Tuple[chex.Array, chex.Array],: Pass in the frequency coefficients for each position
    :param attention_mask: chex.Array: Mask out certain tokens in the input sequence
    :param position_ids: chex.Array: Determine the position of each token in a sequence
    :param causal_mask: chex.Array: Mask out the future tokens in the decoder
    :param deterministic: bool: Determine whether to use dropout or not
    :param init_cache: bool: Initialize the cache
    :param output_attentions: bool: Determine whether to return the attention weights or not
    :param fcm_mask: Mask out the attention weights between the input and output tokens
    :param : Determine if the attention is causal or not
    :return: A tuple of two arrays

    """
    batch_size, sequence_length = hidden_states.shape[:2]
    query_states, key_states, value_states = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(
        hidden_states)

    query_states = query_states.reshape(batch_size, sequence_length, self.config.num_attention_heads, self.head_dim)
    key_states = key_states.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)
    value_states = value_states.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)

    query_states, key_states, value_states = self.apply_rotary(
        query=query_states,
        key=key_states,
        value=value_states,
        position_ids=position_ids,
        freq_cis=freq_cis,
        batch_size=batch_size,
        sequence_length=sequence_length
    )

    assert_msg = (
        "num_attention_heads repeat wont work likely\n"
        f"INFO :\n\trepeat_kv_bnsh Used with num_key_value_groups = {self.num_key_value_groups}\n\t"
        f"NH : {self.config.num_attention_heads} KVH : {self.config.num_attention_heads}"
    )

    assert query_states.shape[-2] == self.config.num_attention_heads, assert_msg
    assert key_states.shape[-2] == self.config.num_attention_heads, assert_msg
    assert value_states.shape[-2] == self.config.num_attention_heads, assert_msg

    query_length, key_length = query_states.shape[1], key_states.shape[1]

    if self.has_variable("cache", "cached_key"):
        mask_shift = self.variables["cache"]["cache_index"]
        max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
        causal_mask = lax.dynamic_slice(
            causal_mask, (0, 0, mask_shift, 0), (1, 1,
                                                 query_length, max_decoder_length)
        )
    else:
        causal_mask = causal_mask[:, :, :query_length, :key_length]

    batch_size = hidden_states.shape[0]
    causal_mask = jnp.broadcast_to(
        causal_mask, (batch_size,) + causal_mask.shape[1:])
    attention_mask = jnp.broadcast_to(jnp.expand_dims(
        attention_mask, axis=(-3, -2)), causal_mask.shape)
    attention_mask = combine_masks(attention_mask, causal_mask, fcm_mask)
    if attention_mask.ndim == 2:
        attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))

    dropout_rng = None

    if not deterministic and self.config.attention_dropout > 0.0:
        dropout_rng = self.make_rng("dropout")

    if self.has_variable("cache", "cached_key") or init_cache:
        key_states, value_states, attention_mask = self._concatenate_to_cache(
            key_states,
            value_states,
            query_states,
            attention_mask
        )

    if self.config.use_sharding_constraint:
        query_states = with_sharding_constraint(
            query_states,
            jax.sharding.PartitionSpec(("dp", "fsdp"), "sp" if query_states.shape[1] != 1 else None, "tp", None)
        )
        key_states = with_sharding_constraint(key_states,
                                              jax.sharding.PartitionSpec(("dp", "fsdp"), "sp", "tp", None))
        value_states = with_sharding_constraint(value_states,
                                                jax.sharding.PartitionSpec(("dp", "fsdp"), "sp", "tp", None))
    attention_bias = lax.select(
        attention_mask > 0,
        jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
        jnp.full(attention_mask.shape, jnp.finfo(
            self.dtype).min).astype(self.dtype),
    )
    query_length, key_length = query_states.shape[1], key_states.shape[1]

    attentions = self.attention_performer.__call__(
        query_states=query_states,
        key_states=key_states,
        value_states=value_states,
        bias=attention_bias,
        attention_mask=attention_mask,
        causal=True,
        dropout_rng=dropout_rng,
        deterministic=deterministic,
        query_sequence_length=query_length,
        key_value_sequence_length=key_length,
        uses_cache=self.has_variable("cache", "cached_key") or init_cache,
        segment_ids=segment_ids,
        causal_mask=causal_mask
    )


    attn_output = self._merge_heads(attentions.attention_outputs)
    if self.config.shard_attention_computation:
        attn_output = with_sharding_constraint(
            attn_output, PartitionSpec(
                ("dp", "fsdp"),
                "sp" if attn_output.shape[1] != 1 else None,
                "tp"
            )
        )
    attn_output = self.o_proj(attn_output)

    attn_output = self.resid_dropout(
        attn_output, deterministic=deterministic)
    outputs = (
        attn_output, attentions.attention_weights
    ) if output_attentions else (
        attn_output,
    )
    return outputs

apply_rotary(batch_size, sequence_length, query, key, value, freq_cis, position_ids)

The apply_rotary function is a modified version of the apply_attention function in the BertModel class. The main difference is that it takes in an additional argument, freq_cis, which are used to calculate the rotary attention weights. The other differences are minor and mostly related to reshaping tensors.

Parameters:

Name Type Description Default
self

Access variables that belong to the class

required
batch_size

Reshape the query, key and value tensors

required
sequence_length

Reshape the query, key and value tensors

required
query

Calculate the attention weights

required
key

Calculate the attention

required
value

Compute the attention weights

required
freq_cis

Calculate the frequency of each word in the vocabulary

required
position_ids

Identify the position of each token in the sequence

required

Returns:

Type Description

A tuple of 3 tensors: query, key and value

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def apply_rotary(self, batch_size, sequence_length, query, key, value, freq_cis, position_ids):
    """
    The apply_rotary function is a modified version of the apply_attention function in the BertModel class.
    The main difference is that it takes in an additional argument, freq_cis, which are used to calculate
    the rotary attention weights. The other differences are minor and mostly related to reshaping tensors.

    :param self: Access variables that belong to the class
    :param batch_size: Reshape the query, key and value tensors
    :param sequence_length: Reshape the query, key and value tensors
    :param query: Calculate the attention weights
    :param key: Calculate the attention
    :param value: Compute the attention weights
    :param freq_cis: Calculate the frequency of each word in the vocabulary
    :param position_ids: Identify the position of each token in the sequence
    :return: A tuple of 3 tensors: query, key and value

    """
    query = query.reshape(batch_size, sequence_length, self.config.num_attention_heads, self.head_dim)
    key = key.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)
    value = value.reshape(batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim)

    query, key, value = self._transpose_sequence_head(query, key, value)
    query, key = self.rotary(
        position_ids=position_ids, query=query, key=key, freq_cis=freq_cis
    )
    key = repeat_kv_bnsh(key, self.num_key_value_groups)
    value = repeat_kv_bnsh(value, self.num_key_value_groups)
    return self._transpose_sequence_head(query, key, value)

FlaxQwen2MoeBlock

Bases: Module

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
class FlaxQwen2MoeBlock(nn.Module):
    config: Qwen2MoeConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]] = None

    def setup(self) -> None:
        attn_block = FlaxQwen2MoeAttention
        if self.config.gradient_checkpointing != "":
            attn_block = nn_partitioning.remat(
                FlaxQwen2MoeAttention, static_argnums=(1, 3, 4, 6, 7, 8, 9),
                policy=get_gradient_checkpoint_policy(
                    self.config.gradient_checkpointing)
            )

        self.self_attn = attn_block(
            self.config,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision
        )
        mlp_block = FlaxQwen2MoeSparseMoeBlock if self.config.num_experts > 0 else FlaxQwen2MoeMLP

        if self.config.gradient_checkpointing != "":
            mlp_block = nn_partitioning.remat(
                mlp_block, static_argnums=(1,),
                policy=get_gradient_checkpoint_policy(
                    self.config.gradient_checkpointing
                )
            )

        self.mlp = mlp_block(
            self.config,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision,
        )
        self.input_layernorm = Qwen2MoeRMSNorm(
            self.config.hidden_size,
            eps=self.config.rms_norm_eps,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
        )
        self.post_attention_layernorm = Qwen2MoeRMSNorm(
            self.config.hidden_size,
            eps=self.config.rms_norm_eps,
            dtype=self.dtype,
            param_dtype=self.param_dtype,

        )

    def __call__(
            self,
            hidden_states: chex.Array,
            freq_cis: Tuple[chex.Array, chex.Array],
            attention_mask: chex.Array,
            position_ids: chex.Array,
            causal_mask: chex.Array,
            deterministic: bool = True,
            init_cache: bool = False,
            output_attentions: Optional[bool] = False,
            output_hidden_states: Optional[bool] = False,
            output_router_logits: Optional[bool] = None,
            return_dict: bool = True,
            segment_ids: Optional[chex.Array] = None,
            fcm_mask: Optional[jnp.ndarray] = None,

    ):
        """
        The __call__ function is the main function of a TransformerEncoderLayer.
        It takes in hidden states, frequency-domain inputs, and masks as input. It then
        applies self-attention to the hidden states using those inputs and returns an
        output tensor with shape (batch_size, sequence_length, model_dim).

        :param self: Refer to the class instance itself
        :param hidden_states: chex.Array: Pass in the hidden state of the previous layer
        :param freq_cis: Tuple[chex.Array, chex.Array],: Pass in the frequency information
        :param attention_mask: chex.Array: Mask out the attention weights for padding tokens
        :param position_ids: chex.Array: Determine the position of each token in the sequence
        :param causal_mask: chex.Array: Mask the attention weights
        :param deterministic: bool: Control whether the dropout is applied or not
        :param init_cache: bool: Initialize the cache in the attention layer
        :param output_attentions: bool: Return the attention weights
        :param fcm_mask: Optional[jnp.ndarray]: Mask the self-attention
        :param : Control the dropout in the self attention layer
        :return: A tuple of two items

        """
        attn_outputs = self.self_attn(
            self.input_layernorm(hidden_states),
            freq_cis,
            attention_mask,
            position_ids,
            causal_mask,
            segment_ids,
            deterministic,
            init_cache,
            output_attentions,
            fcm_mask,
        )
        attn_output = attn_outputs[0]
        hidden_states = hidden_states + attn_output

        feed_forward_input = self.post_attention_layernorm(hidden_states)

        mlp_out = self.mlp(
            feed_forward_input,
            deterministic,
        )

        if self.config.num_experts > 0:
            feed_forward_hidden_states, router_logits = mlp_out
        else:
            feed_forward_hidden_states = mlp_out
            router_logits = None

        hidden_states = hidden_states + feed_forward_hidden_states

        return (hidden_states,) + attn_outputs[1:] + (router_logits,)

__call__(hidden_states, freq_cis, attention_mask, position_ids, causal_mask, deterministic=True, init_cache=False, output_attentions=False, output_hidden_states=False, output_router_logits=None, return_dict=True, segment_ids=None, fcm_mask=None)

The call function is the main function of a TransformerEncoderLayer. It takes in hidden states, frequency-domain inputs, and masks as input. It then applies self-attention to the hidden states using those inputs and returns an output tensor with shape (batch_size, sequence_length, model_dim).

Parameters:

Name Type Description Default
self

Refer to the class instance itself

required
hidden_states Array

chex.Array: Pass in the hidden state of the previous layer

required
freq_cis Tuple[Array, Array]

Tuple[chex.Array, chex.Array],: Pass in the frequency information

required
attention_mask Array

chex.Array: Mask out the attention weights for padding tokens

required
position_ids Array

chex.Array: Determine the position of each token in the sequence

required
causal_mask Array

chex.Array: Mask the attention weights

required
deterministic bool

bool: Control whether the dropout is applied or not

True
init_cache bool

bool: Initialize the cache in the attention layer

False
output_attentions Optional[bool]

bool: Return the attention weights

False
fcm_mask Optional[ndarray]

Optional[jnp.ndarray]: Mask the self-attention

None

Control the dropout in the self attention layer

required

Returns:

Type Description

A tuple of two items

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
def __call__(
        self,
        hidden_states: chex.Array,
        freq_cis: Tuple[chex.Array, chex.Array],
        attention_mask: chex.Array,
        position_ids: chex.Array,
        causal_mask: chex.Array,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        output_router_logits: Optional[bool] = None,
        return_dict: bool = True,
        segment_ids: Optional[chex.Array] = None,
        fcm_mask: Optional[jnp.ndarray] = None,

):
    """
    The __call__ function is the main function of a TransformerEncoderLayer.
    It takes in hidden states, frequency-domain inputs, and masks as input. It then
    applies self-attention to the hidden states using those inputs and returns an
    output tensor with shape (batch_size, sequence_length, model_dim).

    :param self: Refer to the class instance itself
    :param hidden_states: chex.Array: Pass in the hidden state of the previous layer
    :param freq_cis: Tuple[chex.Array, chex.Array],: Pass in the frequency information
    :param attention_mask: chex.Array: Mask out the attention weights for padding tokens
    :param position_ids: chex.Array: Determine the position of each token in the sequence
    :param causal_mask: chex.Array: Mask the attention weights
    :param deterministic: bool: Control whether the dropout is applied or not
    :param init_cache: bool: Initialize the cache in the attention layer
    :param output_attentions: bool: Return the attention weights
    :param fcm_mask: Optional[jnp.ndarray]: Mask the self-attention
    :param : Control the dropout in the self attention layer
    :return: A tuple of two items

    """
    attn_outputs = self.self_attn(
        self.input_layernorm(hidden_states),
        freq_cis,
        attention_mask,
        position_ids,
        causal_mask,
        segment_ids,
        deterministic,
        init_cache,
        output_attentions,
        fcm_mask,
    )
    attn_output = attn_outputs[0]
    hidden_states = hidden_states + attn_output

    feed_forward_input = self.post_attention_layernorm(hidden_states)

    mlp_out = self.mlp(
        feed_forward_input,
        deterministic,
    )

    if self.config.num_experts > 0:
        feed_forward_hidden_states, router_logits = mlp_out
    else:
        feed_forward_hidden_states = mlp_out
        router_logits = None

    hidden_states = hidden_states + feed_forward_hidden_states

    return (hidden_states,) + attn_outputs[1:] + (router_logits,)

FlaxQwen2MoeBlockCollection

Bases: Module

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
class FlaxQwen2MoeBlockCollection(nn.Module):
    config: Qwen2MoeConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]] = None

    def setup(self):
        self.blocks = [
            FlaxQwen2MoeBlock(
                self.config,
                name=str(i),
                dtype=self.dtype,
                param_dtype=self.param_dtype,
                precision=self.precision
            )
            for i in range(
                self.config.num_hidden_layers
            )
        ]

    def __call__(
            self,
            hidden_states: chex.Array,
            freq_cis: Tuple[chex.Array, chex.Array],
            attention_mask: chex.Array,
            position_ids: chex.Array,
            causal_mask: chex.Array,
            deterministic: bool = True,
            init_cache: bool = False,
            output_attentions: Optional[bool] = False,
            output_hidden_states: Optional[bool] = False,
            output_router_logits: Optional[bool] = None,
            return_dict: bool = True,
    ):
        """
        The __call__ function is the main function of a JAX nn.Module.
        It defines how the module behaves when called as a function, and it's what you'll use to call your model
         in training loops or inference scripts.
        The __call__ method should take all inputs that are necessary for computing outputs from the module,
        and return all outputs that are computed by this module.

        :param self: Represent the instance of the class
        :param hidden_states: chex.Array: Pass the input tensor to the encoder
        :param freq_cis: Tuple[chex.Array, chex.Array],: Pass in the frequency of each token
        :param attention_mask: chex.Array: Mask out certain tokens in the input sequence
        :param position_ids: chex.Array: Specify the position of each token in a sequence
        :param causal_mask: chex.Array: Mask the attention weights
        :param deterministic: bool: Determine whether the model is in training or evaluation mode
        :param init_cache: bool: Initialize the cache for each layer
        :param output_attentions: bool: Determine whether to output the attention weights
        :param output_hidden_states: bool: Determine whether to return the hidden states of each layer
        :param return_dict: bool: Return a dictionary of the outputs
        :param : Determine whether to use the forgetful causal mask
        :return: A tuple of 3 values

        """
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        all_router_logits = () if output_router_logits else None

        if not deterministic and self.config.fcm_max_ratio > 0:
            # Apply forgetful causal mask
            batch_size, seq_length = hidden_states.shape[0], hidden_states.shape[1]
            fcm_ratio = jax.random.uniform(
                self.make_rng('fcm'), shape=(batch_size, 1, 1, 1),
                minval=self.config.fcm_min_ratio,
                maxval=self.config.fcm_max_ratio
            )
            fcm_mask = jax.random.uniform(
                self.make_rng('fcm'),
                shape=(batch_size, 1, seq_length, seq_length)
            ) > fcm_ratio
            fcm_mask = fcm_mask.at[:, :, :, 0].set(True)
            fcm_mask = fcm_mask.astype('bool')
        else:
            fcm_mask = None

        for block in self.blocks:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = block(
                hidden_states=hidden_states,
                freq_cis=freq_cis,
                attention_mask=attention_mask,
                position_ids=position_ids,
                causal_mask=causal_mask,
                deterministic=deterministic,
                init_cache=init_cache,
                output_attentions=output_attentions,
                fcm_mask=fcm_mask,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions += layer_outputs[1],
            if output_router_logits:
                all_router_logits += layer_outputs[-1],

        outputs = (hidden_states, all_hidden_states, all_attentions, all_router_logits)

        return outputs

__call__(hidden_states, freq_cis, attention_mask, position_ids, causal_mask, deterministic=True, init_cache=False, output_attentions=False, output_hidden_states=False, output_router_logits=None, return_dict=True)

The call function is the main function of a JAX nn.Module. It defines how the module behaves when called as a function, and it's what you'll use to call your model in training loops or inference scripts. The call method should take all inputs that are necessary for computing outputs from the module, and return all outputs that are computed by this module.

Parameters:

Name Type Description Default
self

Represent the instance of the class

required
hidden_states Array

chex.Array: Pass the input tensor to the encoder

required
freq_cis Tuple[Array, Array]

Tuple[chex.Array, chex.Array],: Pass in the frequency of each token

required
attention_mask Array

chex.Array: Mask out certain tokens in the input sequence

required
position_ids Array

chex.Array: Specify the position of each token in a sequence

required
causal_mask Array

chex.Array: Mask the attention weights

required
deterministic bool

bool: Determine whether the model is in training or evaluation mode

True
init_cache bool

bool: Initialize the cache for each layer

False
output_attentions Optional[bool]

bool: Determine whether to output the attention weights

False
output_hidden_states Optional[bool]

bool: Determine whether to return the hidden states of each layer

False
return_dict bool

bool: Return a dictionary of the outputs

True

Determine whether to use the forgetful causal mask

required

Returns:

Type Description

A tuple of 3 values

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
def __call__(
        self,
        hidden_states: chex.Array,
        freq_cis: Tuple[chex.Array, chex.Array],
        attention_mask: chex.Array,
        position_ids: chex.Array,
        causal_mask: chex.Array,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        output_router_logits: Optional[bool] = None,
        return_dict: bool = True,
):
    """
    The __call__ function is the main function of a JAX nn.Module.
    It defines how the module behaves when called as a function, and it's what you'll use to call your model
     in training loops or inference scripts.
    The __call__ method should take all inputs that are necessary for computing outputs from the module,
    and return all outputs that are computed by this module.

    :param self: Represent the instance of the class
    :param hidden_states: chex.Array: Pass the input tensor to the encoder
    :param freq_cis: Tuple[chex.Array, chex.Array],: Pass in the frequency of each token
    :param attention_mask: chex.Array: Mask out certain tokens in the input sequence
    :param position_ids: chex.Array: Specify the position of each token in a sequence
    :param causal_mask: chex.Array: Mask the attention weights
    :param deterministic: bool: Determine whether the model is in training or evaluation mode
    :param init_cache: bool: Initialize the cache for each layer
    :param output_attentions: bool: Determine whether to output the attention weights
    :param output_hidden_states: bool: Determine whether to return the hidden states of each layer
    :param return_dict: bool: Return a dictionary of the outputs
    :param : Determine whether to use the forgetful causal mask
    :return: A tuple of 3 values

    """
    all_attentions = () if output_attentions else None
    all_hidden_states = () if output_hidden_states else None
    all_router_logits = () if output_router_logits else None

    if not deterministic and self.config.fcm_max_ratio > 0:
        # Apply forgetful causal mask
        batch_size, seq_length = hidden_states.shape[0], hidden_states.shape[1]
        fcm_ratio = jax.random.uniform(
            self.make_rng('fcm'), shape=(batch_size, 1, 1, 1),
            minval=self.config.fcm_min_ratio,
            maxval=self.config.fcm_max_ratio
        )
        fcm_mask = jax.random.uniform(
            self.make_rng('fcm'),
            shape=(batch_size, 1, seq_length, seq_length)
        ) > fcm_ratio
        fcm_mask = fcm_mask.at[:, :, :, 0].set(True)
        fcm_mask = fcm_mask.astype('bool')
    else:
        fcm_mask = None

    for block in self.blocks:
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        layer_outputs = block(
            hidden_states=hidden_states,
            freq_cis=freq_cis,
            attention_mask=attention_mask,
            position_ids=position_ids,
            causal_mask=causal_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            fcm_mask=fcm_mask,
        )
        hidden_states = layer_outputs[0]

        if output_attentions:
            all_attentions += layer_outputs[1],
        if output_router_logits:
            all_router_logits += layer_outputs[-1],

    outputs = (hidden_states, all_hidden_states, all_attentions, all_router_logits)

    return outputs

FlaxQwen2MoeForCausalLM

Bases: FlaxQwen2MoePreTrainedModel

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
class FlaxQwen2MoeForCausalLM(FlaxQwen2MoePreTrainedModel):
    module_class = FlaxQwen2MoeForCausalLMModule

    def set_input_embeddings(self, value):
        self.module.model.embed_tokens = value

    def get_input_embeddings(self):
        return self.module.model.embed_tokens

    def set_decoder(self, decoder):
        self.module.model = decoder

    def get_decoder(self):
        return self.module.model

    def get_output_embeddings(self):
        return self.module.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.module.lm_head = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[chex.Array] = None):
        """
        The prepare_inputs_for_generation function is used to prepare the inputs for a generation task.

        :param self: Access variables that belong to the class
        :param input_ids: Pass in the input tokens
        :param max_length: Set the length of the sequence to be generated
        :param attention_mask: Optional[chex.Array]: Mask the attention weights
        :return: A dictionary of the past_key_values, attention_mask and position ids

        """
        batch_size, seq_length = input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length)
        extended_attention_mask = jnp.ones(
            (batch_size, max_length), dtype="i4")
        if attention_mask is not None:
            position_ids = attention_mask.cumsum(axis=-1) - 1
            extended_attention_mask = lax.dynamic_update_slice(
                extended_attention_mask, attention_mask, (0, 0))
        else:
            position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[
                                            None, :], (batch_size, seq_length))

        return {
            "past_key_values": past_key_values,
            "attention_mask": extended_attention_mask,
            "position_ids": position_ids,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
        return model_kwargs

prepare_inputs_for_generation(input_ids, max_length, attention_mask=None)

The prepare_inputs_for_generation function is used to prepare the inputs for a generation task.

Parameters:

Name Type Description Default
self

Access variables that belong to the class

required
input_ids

Pass in the input tokens

required
max_length

Set the length of the sequence to be generated

required
attention_mask Optional[Array]

Optional[chex.Array]: Mask the attention weights

None

Returns:

Type Description

A dictionary of the past_key_values, attention_mask and position ids

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[chex.Array] = None):
    """
    The prepare_inputs_for_generation function is used to prepare the inputs for a generation task.

    :param self: Access variables that belong to the class
    :param input_ids: Pass in the input tokens
    :param max_length: Set the length of the sequence to be generated
    :param attention_mask: Optional[chex.Array]: Mask the attention weights
    :return: A dictionary of the past_key_values, attention_mask and position ids

    """
    batch_size, seq_length = input_ids.shape

    past_key_values = self.init_cache(batch_size, max_length)
    extended_attention_mask = jnp.ones(
        (batch_size, max_length), dtype="i4")
    if attention_mask is not None:
        position_ids = attention_mask.cumsum(axis=-1) - 1
        extended_attention_mask = lax.dynamic_update_slice(
            extended_attention_mask, attention_mask, (0, 0))
    else:
        position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[
                                        None, :], (batch_size, seq_length))

    return {
        "past_key_values": past_key_values,
        "attention_mask": extended_attention_mask,
        "position_ids": position_ids,
    }

FlaxQwen2MoeForCausalLMModule

Bases: Module

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
class FlaxQwen2MoeForCausalLMModule(nn.Module):
    config: Qwen2MoeConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]] = None

    def setup(self):
        self.model = FlaxQwen2MoeModule(
            self.config,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision,
        )

        self.lm_head = Linear(
            self.config.vocab_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )

    def __call__(
            self,
            input_ids: chex.Array,
            attention_mask: chex.Array = None,
            position_ids: chex.Array = None,
            deterministic: bool = True,
            init_cache: bool = False,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            output_router_logits: Optional[bool] = None,
            return_dict: bool = True,
            extra_embedding: Optional[Union[jnp.ndarray, None]] = None
    ):
        """
        The __call__ function is the main function of a Flax module. It takes in inputs and returns outputs.

        :param self: Refer to the object itself
        :param input_ids: chex.Array: Pass the input token ids to the model
        :param attention_mask: chex.Array: Mask out the padding tokens
        :param position_ids: chex.Array: Specify the position of each token in the input sequence
        :param deterministic: bool: Control whether the model is trained or not
        :param init_cache: bool: Initialize the cache for the decoder
        :param output_attentions: bool: Return the attention weights
        :param output_hidden_states: bool: Determine whether to return the hidden states
        :param return_dict: bool: Return a dictionary of the outputs or not
        :param extra_embedding: Optional[Union[jnp.ndarray: Pass in the embedding of the word that we want to predict
        :param None]]: Pass in the extra embedding
        :return: The logits and the hidden states

        """
        if output_router_logits is None:
            output_router_logits = self.config.output_router_logits
        if output_hidden_states is None:
            output_hidden_states = self.config.output_hidden_states
        if output_attentions is None:
            output_attentions = self.config.output_attentions
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            init_cache=init_cache,
            deterministic=deterministic,
            return_dict=True,
        )
        hidden_states = outputs.last_hidden_state
        if self.config.tie_word_embeddings:
            shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"]
            shared_kernel = fjformer.linen.linen.control_quantization(shared_kernel, self.param_dtype).T
            logits = self.lm_head.apply(
                {"params": {"kernel": shared_kernel}}, hidden_states)
        else:
            logits = self.lm_head(hidden_states)

        logits = logits.astype(jnp.float32)
        batch_size, seq_length, hd = logits.shape
        aux_loss = None
        if output_router_logits and outputs.router_logits is not None:
            aux_loss = auxiliary_load_balancing_loss_func(
                gate_logits=tuple([logit.reshape(batch_size * seq_length, -1) for logit in outputs.router_logits]),
                num_experts=self.config.num_experts,
                top_k=self.config.num_experts_per_tok,
                attention_mask=attention_mask
            )
            aux_loss = aux_loss * self.config.router_aux_loss_coef
        if not return_dict:
            outputs = (logits,) + tuple(
                v
                for v in [
                    aux_loss,
                    outputs.hidden_states,
                    outputs.attentions,
                    outputs.router_logits
                ]
                if v is not None
            )
            return outputs

        return MoeCausalLMOutput(
            aux_loss=aux_loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

__call__(input_ids, attention_mask=None, position_ids=None, deterministic=True, init_cache=False, output_attentions=None, output_hidden_states=None, output_router_logits=None, return_dict=True, extra_embedding=None)

The call function is the main function of a Flax module. It takes in inputs and returns outputs.

Parameters:

Name Type Description Default
self

Refer to the object itself

required
input_ids Array

chex.Array: Pass the input token ids to the model

required
attention_mask Array

chex.Array: Mask out the padding tokens

None
position_ids Array

chex.Array: Specify the position of each token in the input sequence

None
deterministic bool

bool: Control whether the model is trained or not

True
init_cache bool

bool: Initialize the cache for the decoder

False
output_attentions Optional[bool]

bool: Return the attention weights

None
output_hidden_states Optional[bool]

bool: Determine whether to return the hidden states

None
return_dict bool

bool: Return a dictionary of the outputs or not

True
extra_embedding Optional[Union[ndarray, None]]

Optional[Union[jnp.ndarray: Pass in the embedding of the word that we want to predict

None
None]]

Pass in the extra embedding

required

Returns:

Type Description

The logits and the hidden states

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
def __call__(
        self,
        input_ids: chex.Array,
        attention_mask: chex.Array = None,
        position_ids: chex.Array = None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: bool = True,
        extra_embedding: Optional[Union[jnp.ndarray, None]] = None
):
    """
    The __call__ function is the main function of a Flax module. It takes in inputs and returns outputs.

    :param self: Refer to the object itself
    :param input_ids: chex.Array: Pass the input token ids to the model
    :param attention_mask: chex.Array: Mask out the padding tokens
    :param position_ids: chex.Array: Specify the position of each token in the input sequence
    :param deterministic: bool: Control whether the model is trained or not
    :param init_cache: bool: Initialize the cache for the decoder
    :param output_attentions: bool: Return the attention weights
    :param output_hidden_states: bool: Determine whether to return the hidden states
    :param return_dict: bool: Return a dictionary of the outputs or not
    :param extra_embedding: Optional[Union[jnp.ndarray: Pass in the embedding of the word that we want to predict
    :param None]]: Pass in the extra embedding
    :return: The logits and the hidden states

    """
    if output_router_logits is None:
        output_router_logits = self.config.output_router_logits
    if output_hidden_states is None:
        output_hidden_states = self.config.output_hidden_states
    if output_attentions is None:
        output_attentions = self.config.output_attentions
    outputs = self.model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        output_router_logits=output_router_logits,
        init_cache=init_cache,
        deterministic=deterministic,
        return_dict=True,
    )
    hidden_states = outputs.last_hidden_state
    if self.config.tie_word_embeddings:
        shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"]
        shared_kernel = fjformer.linen.linen.control_quantization(shared_kernel, self.param_dtype).T
        logits = self.lm_head.apply(
            {"params": {"kernel": shared_kernel}}, hidden_states)
    else:
        logits = self.lm_head(hidden_states)

    logits = logits.astype(jnp.float32)
    batch_size, seq_length, hd = logits.shape
    aux_loss = None
    if output_router_logits and outputs.router_logits is not None:
        aux_loss = auxiliary_load_balancing_loss_func(
            gate_logits=tuple([logit.reshape(batch_size * seq_length, -1) for logit in outputs.router_logits]),
            num_experts=self.config.num_experts,
            top_k=self.config.num_experts_per_tok,
            attention_mask=attention_mask
        )
        aux_loss = aux_loss * self.config.router_aux_loss_coef
    if not return_dict:
        outputs = (logits,) + tuple(
            v
            for v in [
                aux_loss,
                outputs.hidden_states,
                outputs.attentions,
                outputs.router_logits
            ]
            if v is not None
        )
        return outputs

    return MoeCausalLMOutput(
        aux_loss=aux_loss,
        logits=logits,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
        router_logits=outputs.router_logits,
    )

FlaxQwen2MoeForSequenceClassificationModule

Bases: Module

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
class FlaxQwen2MoeForSequenceClassificationModule(nn.Module):
    num_classes: int
    config: Qwen2MoeConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]] = None

    def setup(self):
        """
        The setup function is called once at the beginning of training.
        It initializes the model and optimizer, and sets up any other state that needs to be initialized.

        :param self: Access variables that belong to the class
        :return: A tuple of the model and the classifier
        """
        self.model = FlaxQwen2MoeModule(self.config, dtype=self.dtype)
        self.classifier = Linear(
            self.num_classes,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(
                stddev=self.config.initializer_range),
            precision=self.precision,
        )

    def __call__(
            self,
            input_ids: chex.Array,
            attention_mask: chex.Array = None,
            position_ids: chex.Array = None,
            deterministic: bool = True,
            init_cache: bool = False,
            output_attentions: bool = False,
            output_hidden_states: bool = False,
            return_dict: bool = True,
            extra_embedding: Optional[Union[jnp.ndarray, None]] = None
    ):
        """
        The __call__ function is the main function of a Flax module.
        It takes in all the inputs to the model and returns all outputs from it.
        The __call__ function can be called directly on an instance of a class, or by using parentheses after an instance:
            >>> my_model = MyModel()  # instantiate your model class
            >>> output = my_model(input)  # call your model with input data as arguments to __call__

        :param self: Refer to the class instance
        :param input_ids: chex.Array: Pass the input to the model
        :param attention_mask: chex.Array: Specify which tokens are masked
        :param position_ids: chex.Array: Specify the position of each token in the sequence
        :param deterministic: bool: Control whether the model is run in deterministic or stochastic mode
        :param init_cache: bool: Initialize the cache for the transformer
        :param output_attentions: bool: Return the attention weights
        :param output_hidden_states: bool: Return the hidden states of all layers
        :param return_dict: bool: Return a dictionary of outputs
        :param extra_embedding: Optional[Union[jnp.ndarray: Pass in the embedding of a new word
        :param None]]: Pass the extra embedding to the model
        :return: A tuple of logits and hidden_states

        """
        batch_size, seq_length = input_ids.shape
        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)
        if position_ids is None:
            position_ids = jnp.broadcast_to(
                jnp.clip(jnp.cumsum(attention_mask, axis=-1) - 1, a_min=0),
                (batch_size, seq_length)
            )
        outputs = self.model(
            input_ids,
            attention_mask,
            position_ids,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            extra_embedding=extra_embedding
        )

        hidden_states = outputs[0]
        prediction = self.classifier(hidden_states)
        if return_dict:
            return FlaxSequenceClassifierOutput(
                logits=prediction,
                hidden_states=hidden_states
            )
        else:
            return prediction,

__call__(input_ids, attention_mask=None, position_ids=None, deterministic=True, init_cache=False, output_attentions=False, output_hidden_states=False, return_dict=True, extra_embedding=None)

The call function is the main function of a Flax module. It takes in all the inputs to the model and returns all outputs from it. The call function can be called directly on an instance of a class, or by using parentheses after an instance: >>> my_model = MyModel() # instantiate your model class >>> output = my_model(input) # call your model with input data as arguments to call

Parameters:

Name Type Description Default
self

Refer to the class instance

required
input_ids Array

chex.Array: Pass the input to the model

required
attention_mask Array

chex.Array: Specify which tokens are masked

None
position_ids Array

chex.Array: Specify the position of each token in the sequence

None
deterministic bool

bool: Control whether the model is run in deterministic or stochastic mode

True
init_cache bool

bool: Initialize the cache for the transformer

False
output_attentions bool

bool: Return the attention weights

False
output_hidden_states bool

bool: Return the hidden states of all layers

False
return_dict bool

bool: Return a dictionary of outputs

True
extra_embedding Optional[Union[ndarray, None]]

Optional[Union[jnp.ndarray: Pass in the embedding of a new word

None
None]]

Pass the extra embedding to the model

required

Returns:

Type Description

A tuple of logits and hidden_states

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
def __call__(
        self,
        input_ids: chex.Array,
        attention_mask: chex.Array = None,
        position_ids: chex.Array = None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
        extra_embedding: Optional[Union[jnp.ndarray, None]] = None
):
    """
    The __call__ function is the main function of a Flax module.
    It takes in all the inputs to the model and returns all outputs from it.
    The __call__ function can be called directly on an instance of a class, or by using parentheses after an instance:
        >>> my_model = MyModel()  # instantiate your model class
        >>> output = my_model(input)  # call your model with input data as arguments to __call__

    :param self: Refer to the class instance
    :param input_ids: chex.Array: Pass the input to the model
    :param attention_mask: chex.Array: Specify which tokens are masked
    :param position_ids: chex.Array: Specify the position of each token in the sequence
    :param deterministic: bool: Control whether the model is run in deterministic or stochastic mode
    :param init_cache: bool: Initialize the cache for the transformer
    :param output_attentions: bool: Return the attention weights
    :param output_hidden_states: bool: Return the hidden states of all layers
    :param return_dict: bool: Return a dictionary of outputs
    :param extra_embedding: Optional[Union[jnp.ndarray: Pass in the embedding of a new word
    :param None]]: Pass the extra embedding to the model
    :return: A tuple of logits and hidden_states

    """
    batch_size, seq_length = input_ids.shape
    if attention_mask is None:
        attention_mask = jnp.ones_like(input_ids)
    if position_ids is None:
        position_ids = jnp.broadcast_to(
            jnp.clip(jnp.cumsum(attention_mask, axis=-1) - 1, a_min=0),
            (batch_size, seq_length)
        )
    outputs = self.model(
        input_ids,
        attention_mask,
        position_ids,
        deterministic=deterministic,
        init_cache=init_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
        extra_embedding=extra_embedding
    )

    hidden_states = outputs[0]
    prediction = self.classifier(hidden_states)
    if return_dict:
        return FlaxSequenceClassifierOutput(
            logits=prediction,
            hidden_states=hidden_states
        )
    else:
        return prediction,

setup()

The setup function is called once at the beginning of training. It initializes the model and optimizer, and sets up any other state that needs to be initialized.

Parameters:

Name Type Description Default
self

Access variables that belong to the class

required

Returns:

Type Description

A tuple of the model and the classifier

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
def setup(self):
    """
    The setup function is called once at the beginning of training.
    It initializes the model and optimizer, and sets up any other state that needs to be initialized.

    :param self: Access variables that belong to the class
    :return: A tuple of the model and the classifier
    """
    self.model = FlaxQwen2MoeModule(self.config, dtype=self.dtype)
    self.classifier = Linear(
        self.num_classes,
        dtype=self.dtype,
        param_dtype=self.param_dtype,
        use_bias=False,
        kernel_init=jax.nn.initializers.normal(
            stddev=self.config.initializer_range),
        precision=self.precision,
    )

FlaxQwen2MoeMLP

Bases: Module

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
class FlaxQwen2MoeMLP(nn.Module):
    config: Qwen2MoeConfig
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[Union[jax.lax.Precision, str]] = None
    intermediate_size: Optional[int] = None

    def setup(self) -> None:
        config = self.config
        intermediate_size = self.intermediate_size if self.intermediate_size is not None else config.moe_intermediate_size
        self.gate_proj = Linear(
            intermediate_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(
                self.config.initializer_range
            ),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )
        self.down_proj = Linear(
            config.hidden_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(
                self.config.initializer_range),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )
        self.up_proj = Linear(
            intermediate_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(
                self.config.initializer_range),
            precision=self.precision,
            **get_dot_general_by_bits(self.config.bits, self.config.easy_method)
        )

    def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
        """
        The __call__ function is the main function of a class.
        It is called when an instance of the class (an object) is invoked as a function, i.e., obj(arguments).
        The __call__ method enables instances of a class to be called like standard Python functions.

        :param self: Represent the instance of the class
        :param x: jnp.ndarray: Pass in the input to the layer
        :param deterministic: bool: Determine whether to use dropout
        :return: A tensor that is the result of applying a dropout function to x

        """
        x = self.down_proj(jax.nn.silu(self.gate_proj(x)) * self.up_proj(x))
        return x

__call__(x, deterministic=True)

The call function is the main function of a class. It is called when an instance of the class (an object) is invoked as a function, i.e., obj(arguments). The call method enables instances of a class to be called like standard Python functions.

Parameters:

Name Type Description Default
self

Represent the instance of the class

required
x ndarray

jnp.ndarray: Pass in the input to the layer

required
deterministic bool

bool: Determine whether to use dropout

True

Returns:

Type Description
ndarray

A tensor that is the result of applying a dropout function to x

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
    """
    The __call__ function is the main function of a class.
    It is called when an instance of the class (an object) is invoked as a function, i.e., obj(arguments).
    The __call__ method enables instances of a class to be called like standard Python functions.

    :param self: Represent the instance of the class
    :param x: jnp.ndarray: Pass in the input to the layer
    :param deterministic: bool: Determine whether to use dropout
    :return: A tensor that is the result of applying a dropout function to x

    """
    x = self.down_proj(jax.nn.silu(self.gate_proj(x)) * self.up_proj(x))
    return x

FlaxQwen2MoePreTrainedModel

Bases: EasyDeLFlaxPretrainedModel

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
class FlaxQwen2MoePreTrainedModel(EasyDeLFlaxPretrainedModel):
    config_class = Qwen2MoeConfig
    base_model_prefix = "model"
    module_class: nn.Module = None

    def __init__(
            self,
            config: Qwen2MoeConfig,
            input_shape: Tuple = (1, 1),
            seed: int = 0,
            dtype: jnp.dtype = jnp.float32,
            _do_init: bool = True,
            **kwargs,
    ):
        """
        The __init__ function is called when the class is instantiated.
        It sets up the instance of the class, and defines what happens when it's created.
        The __init__ function can take arguments, but self is always required (it refers to the instance of the object).


        :param self: Refer to the object itself
        :param config: Qwen2MoeConfig: Pass the configuration to the module
        :param input_shape: Tuple: Specify the shape of the input to the model
        :param seed: int: Set the seed for random number generation
        :param dtype: jnp.dtype: Specify the data type of the input
        :param _do_init: bool: Control whether the module is initialized or not
        :param kwargs: Pass in any additional parameters that the module_class might need
        :param : Specify the number of layers in the network
        :return: The super() of the class

        """
        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
        """
        The init_weights function is used to initialize the weights of a model.

        :param self: Access variables that belong to the class
        :param rng: jax.random.PRNGKey: Initialize the weights of the model
        :param input_shape: Tuple: Specify the shape of the input tensor
        :param params: FrozenDict: Pass in the parameters of a pre-trained model
        :return: A frozendict of parameters

        """
        input_ids = jnp.zeros(input_shape, dtype="i4")
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        if self.config.add_cross_attention:
            encoder_hidden_states = jnp.zeros(
                input_shape + (self.config.hidden_size,))
            encoder_attention_mask = attention_mask
            module_init_outputs = self.module.init(
                rngs,
                input_ids,
                attention_mask,
                position_ids,
                encoder_hidden_states,
                encoder_attention_mask,
                return_dict=False,
            )
        else:
            module_init_outputs = self.module.init(
                rngs, input_ids, attention_mask, position_ids, return_dict=False)

        random_params = module_init_outputs["params"]

        if params is not None:
            random_params = flatten_dict(unfreeze(random_params))
            params = flatten_dict(unfreeze(params))
            for missing_key in self._missing_keys:
                params[missing_key] = random_params[missing_key]
            self._missing_keys = set()
            return freeze(unflatten_dict(params))
        else:
            return random_params

    def init_cache(self, batch_size, max_length):
        """
        The init_cache function is used to initialize the cache for a given batch size and sequence length.
        The cache is a dictionary that contains all the intermediate states from each layer in the model.
        This allows us to run inference on multiple batches without having to re-run forward passes through every layer in
        the model, which would be very slow.

        :param self: Access the module
        :param batch_size: Define the batch size of the input tensors
        :param max_length: Set the length of the input sequence
        :return: A dictionary with the following keys:

        """
        input_ids = jnp.ones((batch_size, max_length))
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(
            jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        init_variables = self.module.init(
            jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
        )
        return init_variables["cache"]

    def __call__(
            self,
            input_ids: chex.Array,
            attention_mask: chex.Array = None,
            position_ids: chex.Array = None,
            params: dict = None,
            past_key_values: dict = None,
            dropout_rng: jax.random.PRNGKey = None,
            train: bool = False,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            output_router_logits: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            extra_embedding: Optional[Union[jnp.ndarray, None]] = None,
            add_params_field: bool = False,
            **kwargs
    ):
        """
        The __call__ function is the main function of a JAX module.
        It takes in inputs and returns outputs, but it also has some other important features:
        - It can take in mutable state (e.g., past_key_values) that will be updated during the call and returned at the end.
        - It can take in random number generators (rngs) that are used to generate random numbers for dropout or sampling operations.

        :param self: Represent the instance of the class
        :param input_ids: chex.Array: Pass in the input tokens
        :param attention_mask: chex.Array: Mask out certain tokens in the input
        :param position_ids: chex.Array: Create the positional embeddings
        :param params: dict: Pass in the parameters of the model
        :param past_key_values: dict: Pass in the past key values from a previous call to __call__
        :param dropout_rng: jax.random.PRNGKey: Make sure that the dropout is applied in a random way
        :param train: bool: Determine whether to use dropout or not
        :param output_attentions: Optional[bool]: Determine whether to return the attention weights
        :param output_hidden_states: Optional[bool]: Return the hidden states of all layers
        :param return_dict: Optional[bool]: Determine whether to return a dictionary or not
        :param extra_embedding: Optional[Union[jnp.ndarray,None]]: Pass in the embedding for the input_ids
        :param add_params_field: bool: Add the params field to the inputs dictionary
        :return: A tuple of the following:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits

        return_dict = return_dict if return_dict is not None else self.config.return_dict

        batch_size, sequence_length = input_ids.shape

        assert sequence_length <= self.config.max_position_embeddings, "Maximum Position Embedding Reached !"

        if position_ids is None:
            if past_key_values is not None:
                raise ValueError(
                    "Make sure to provide `position_ids` when passing `past_key_values`.")

            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[
                                            None, :], (batch_size, sequence_length))

        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        if self.config.bits is not None:
            rngs['params'] = jax.random.key(0)

        inputs = {
            "params": params or self.params
        } if add_params_field else params or self.params

        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        outputs = self.module.apply(
            inputs,
            jnp.array(input_ids, dtype="i4"),
            jnp.array(attention_mask, dtype="i4"),
            jnp.array(position_ids, dtype="i4"),
            not train,
            False,
            output_attentions,
            output_hidden_states,
            output_router_logits,
            return_dict,
            extra_embedding,
            rngs=rngs,
            mutable=mutable,
        )

        if past_key_values is not None and return_dict:
            outputs, past_key_values = outputs
            outputs["past_key_values"] = unfreeze(past_key_values["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past_key_values = outputs
            outputs = outputs[:1] + \
                      (unfreeze(past_key_values["cache"]),) + outputs[1:]

        return outputs

__call__(input_ids, attention_mask=None, position_ids=None, params=None, past_key_values=None, dropout_rng=None, train=False, output_attentions=None, output_hidden_states=None, output_router_logits=None, return_dict=None, extra_embedding=None, add_params_field=False, **kwargs)

The call function is the main function of a JAX module. It takes in inputs and returns outputs, but it also has some other important features: - It can take in mutable state (e.g., past_key_values) that will be updated during the call and returned at the end. - It can take in random number generators (rngs) that are used to generate random numbers for dropout or sampling operations.

Parameters:

Name Type Description Default
self

Represent the instance of the class

required
input_ids Array

chex.Array: Pass in the input tokens

required
attention_mask Array

chex.Array: Mask out certain tokens in the input

None
position_ids Array

chex.Array: Create the positional embeddings

None
params dict

dict: Pass in the parameters of the model

None
past_key_values dict

dict: Pass in the past key values from a previous call to call

None
dropout_rng PRNGKey

jax.random.PRNGKey: Make sure that the dropout is applied in a random way

None
train bool

bool: Determine whether to use dropout or not

False
output_attentions Optional[bool]

Optional[bool]: Determine whether to return the attention weights

None
output_hidden_states Optional[bool]

Optional[bool]: Return the hidden states of all layers

None
return_dict Optional[bool]

Optional[bool]: Determine whether to return a dictionary or not

None
extra_embedding Optional[Union[ndarray, None]]

Optional[Union[jnp.ndarray,None]]: Pass in the embedding for the input_ids

None
add_params_field bool

bool: Add the params field to the inputs dictionary

False

Returns:

Type Description

A tuple of the following:

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
def __call__(
        self,
        input_ids: chex.Array,
        attention_mask: chex.Array = None,
        position_ids: chex.Array = None,
        params: dict = None,
        past_key_values: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        extra_embedding: Optional[Union[jnp.ndarray, None]] = None,
        add_params_field: bool = False,
        **kwargs
):
    """
    The __call__ function is the main function of a JAX module.
    It takes in inputs and returns outputs, but it also has some other important features:
    - It can take in mutable state (e.g., past_key_values) that will be updated during the call and returned at the end.
    - It can take in random number generators (rngs) that are used to generate random numbers for dropout or sampling operations.

    :param self: Represent the instance of the class
    :param input_ids: chex.Array: Pass in the input tokens
    :param attention_mask: chex.Array: Mask out certain tokens in the input
    :param position_ids: chex.Array: Create the positional embeddings
    :param params: dict: Pass in the parameters of the model
    :param past_key_values: dict: Pass in the past key values from a previous call to __call__
    :param dropout_rng: jax.random.PRNGKey: Make sure that the dropout is applied in a random way
    :param train: bool: Determine whether to use dropout or not
    :param output_attentions: Optional[bool]: Determine whether to return the attention weights
    :param output_hidden_states: Optional[bool]: Return the hidden states of all layers
    :param return_dict: Optional[bool]: Determine whether to return a dictionary or not
    :param extra_embedding: Optional[Union[jnp.ndarray,None]]: Pass in the embedding for the input_ids
    :param add_params_field: bool: Add the params field to the inputs dictionary
    :return: A tuple of the following:

    """
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits

    return_dict = return_dict if return_dict is not None else self.config.return_dict

    batch_size, sequence_length = input_ids.shape

    assert sequence_length <= self.config.max_position_embeddings, "Maximum Position Embedding Reached !"

    if position_ids is None:
        if past_key_values is not None:
            raise ValueError(
                "Make sure to provide `position_ids` when passing `past_key_values`.")

        position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[
                                        None, :], (batch_size, sequence_length))

    if attention_mask is None:
        attention_mask = jnp.ones((batch_size, sequence_length))

    rngs = {}
    if dropout_rng is not None:
        rngs["dropout"] = dropout_rng

    if self.config.bits is not None:
        rngs['params'] = jax.random.key(0)

    inputs = {
        "params": params or self.params
    } if add_params_field else params or self.params

    if past_key_values:
        inputs["cache"] = past_key_values
        mutable = ["cache"]
    else:
        mutable = False

    outputs = self.module.apply(
        inputs,
        jnp.array(input_ids, dtype="i4"),
        jnp.array(attention_mask, dtype="i4"),
        jnp.array(position_ids, dtype="i4"),
        not train,
        False,
        output_attentions,
        output_hidden_states,
        output_router_logits,
        return_dict,
        extra_embedding,
        rngs=rngs,
        mutable=mutable,
    )

    if past_key_values is not None and return_dict:
        outputs, past_key_values = outputs
        outputs["past_key_values"] = unfreeze(past_key_values["cache"])
        return outputs
    elif past_key_values is not None and not return_dict:
        outputs, past_key_values = outputs
        outputs = outputs[:1] + \
                  (unfreeze(past_key_values["cache"]),) + outputs[1:]

    return outputs

__init__(config, input_shape=(1, 1), seed=0, dtype=jnp.float32, _do_init=True, **kwargs)

The init function is called when the class is instantiated. It sets up the instance of the class, and defines what happens when it's created. The init function can take arguments, but self is always required (it refers to the instance of the object).

Parameters:

Name Type Description Default
self

Refer to the object itself

required
config Qwen2MoeConfig

Qwen2MoeConfig: Pass the configuration to the module

required
input_shape Tuple

Tuple: Specify the shape of the input to the model

(1, 1)
seed int

int: Set the seed for random number generation

0
dtype dtype

jnp.dtype: Specify the data type of the input

float32
_do_init bool

bool: Control whether the module is initialized or not

True
kwargs

Pass in any additional parameters that the module_class might need

{}

Specify the number of layers in the network

required

Returns:

Type Description

The super() of the class

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
def __init__(
        self,
        config: Qwen2MoeConfig,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        _do_init: bool = True,
        **kwargs,
):
    """
    The __init__ function is called when the class is instantiated.
    It sets up the instance of the class, and defines what happens when it's created.
    The __init__ function can take arguments, but self is always required (it refers to the instance of the object).


    :param self: Refer to the object itself
    :param config: Qwen2MoeConfig: Pass the configuration to the module
    :param input_shape: Tuple: Specify the shape of the input to the model
    :param seed: int: Set the seed for random number generation
    :param dtype: jnp.dtype: Specify the data type of the input
    :param _do_init: bool: Control whether the module is initialized or not
    :param kwargs: Pass in any additional parameters that the module_class might need
    :param : Specify the number of layers in the network
    :return: The super() of the class

    """
    module = self.module_class(config=config, dtype=dtype, **kwargs)
    super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)

init_cache(batch_size, max_length)

The init_cache function is used to initialize the cache for a given batch size and sequence length. The cache is a dictionary that contains all the intermediate states from each layer in the model. This allows us to run inference on multiple batches without having to re-run forward passes through every layer in the model, which would be very slow.

Parameters:

Name Type Description Default
self

Access the module

required
batch_size

Define the batch size of the input tensors

required
max_length

Set the length of the input sequence

required

Returns:

Type Description

A dictionary with the following keys:

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
def init_cache(self, batch_size, max_length):
    """
    The init_cache function is used to initialize the cache for a given batch size and sequence length.
    The cache is a dictionary that contains all the intermediate states from each layer in the model.
    This allows us to run inference on multiple batches without having to re-run forward passes through every layer in
    the model, which would be very slow.

    :param self: Access the module
    :param batch_size: Define the batch size of the input tensors
    :param max_length: Set the length of the input sequence
    :return: A dictionary with the following keys:

    """
    input_ids = jnp.ones((batch_size, max_length))
    attention_mask = jnp.ones_like(input_ids)
    position_ids = jnp.broadcast_to(jnp.arange(
        jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

    init_variables = self.module.init(
        jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
    )
    return init_variables["cache"]

init_weights(rng, input_shape, params=None)

The init_weights function is used to initialize the weights of a model.

Parameters:

Name Type Description Default
self

Access variables that belong to the class

required
rng PRNGKey

jax.random.PRNGKey: Initialize the weights of the model

required
input_shape Tuple

Tuple: Specify the shape of the input tensor

required
params FrozenDict

FrozenDict: Pass in the parameters of a pre-trained model

None

Returns:

Type Description
FrozenDict

A frozendict of parameters

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
    """
    The init_weights function is used to initialize the weights of a model.

    :param self: Access variables that belong to the class
    :param rng: jax.random.PRNGKey: Initialize the weights of the model
    :param input_shape: Tuple: Specify the shape of the input tensor
    :param params: FrozenDict: Pass in the parameters of a pre-trained model
    :return: A frozendict of parameters

    """
    input_ids = jnp.zeros(input_shape, dtype="i4")
    attention_mask = jnp.ones_like(input_ids)
    position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
    params_rng, dropout_rng = jax.random.split(rng)
    rngs = {"params": params_rng, "dropout": dropout_rng}

    if self.config.add_cross_attention:
        encoder_hidden_states = jnp.zeros(
            input_shape + (self.config.hidden_size,))
        encoder_attention_mask = attention_mask
        module_init_outputs = self.module.init(
            rngs,
            input_ids,
            attention_mask,
            position_ids,
            encoder_hidden_states,
            encoder_attention_mask,
            return_dict=False,
        )
    else:
        module_init_outputs = self.module.init(
            rngs, input_ids, attention_mask, position_ids, return_dict=False)

    random_params = module_init_outputs["params"]

    if params is not None:
        random_params = flatten_dict(unfreeze(random_params))
        params = flatten_dict(unfreeze(params))
        for missing_key in self._missing_keys:
            params[missing_key] = random_params[missing_key]
        self._missing_keys = set()
        return freeze(unflatten_dict(params))
    else:
        return random_params

FlaxQwen2MoeSparseMoeBlock

Bases: Module

This implementation is strictly equivalent to standard MoE with full capacity (no dropped tokens). It's faster since it formulates MoE operations in terms of block-sparse operations to accomodate imbalanced assignments of tokens to experts, whereas standard MoE either (1) drop tokens at the cost of reduced performance or (2) set capacity factor to number of experts and thus waste computation and memory on padding.

Source code in src/python/easydel/modules/qwen2_moe/modeling_qwen2_moe_flax.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
class FlaxQwen2MoeSparseMoeBlock(nn.Module):
    """
    This implementation is
    strictly equivalent to standard MoE with full capacity (no
    dropped tokens). It's faster since it formulates MoE operations
    in terms of block-sparse operations to accomodate imbalanced
    assignments of tokens to experts, whereas standard MoE either
    (1) drop tokens at the cost of reduced performance or (2) set
    capacity factor to number of experts and thus waste computation
    and memory on padding.
    """
    config: Qwen2MoeConfig
    dtype: jnp.dtype = jnp.bfloat16
    param_dtype: jnp.dtype = jnp.bfloat16
    precision: Optional[
        Union[None, jax.lax.Precision]
    ] = jax.lax.Precision("fastest")

    def setup(self) -> None:
        self.gate = Linear(
            self.config.num_experts,
            use_bias=False,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision,
            kernel_init=nn.initializers.normal(),
        )

        self.experts = FlaxQwen2MoeBlocKSparesTop2MLPCollection(
            config=self.config,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision
        )

        self.shared_expert = FlaxQwen2MoeMLP(
            config=self.config,
            intermediate_size=self.config.shared_expert_intermediate_size,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision
        )
        self.shared_expert_gate = Linear(
            1,
            use_bias=False,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision
        )

    def __call__(
            self,
            hidden_states: chex.Array,
            e: bool = False  # Ignored
    ) -> Tuple[chex.Array, chex.Array]:
        batch_size, sequence_length, hidden_dim = hidden_states.shape

        router_logits = self.gate(hidden_states).astype(
            jnp.promote_types(self.dtype, jnp.float32)
        )

        routing_weights = jax.nn.softmax(
            router_logits.astype(
                jnp.promote_types(self.dtype, jnp.float32)
            ), axis=-1
        )

        routing_weights, selected_experts = jax.lax.top_k(
            routing_weights,
            k=self.config.num_experts_per_tok
        )

        if self.config.norm_topk_prob:
            routing_weights /= routing_weights.sum(axis=-1, keepdims=True)
        final_hidden_state = self.experts(
            selected_experts=selected_experts,
            batch_size=batch_size,
            sequence_length=sequence_length,
            hidden_dim=hidden_dim,
            hidden_states=hidden_states,
            routing_weights=routing_weights
        )
        shared_expert_output = self.shared_expert(hidden_states)
        shared_expert_output = jax.nn.sigmoid(
            self.shared_expert_gate(hidden_states)
        ) * shared_expert_output
        final_hidden_state = final_hidden_state + shared_expert_output

        return (
            final_hidden_state,
            router_logits
        )