Skip to content

modules.phi.modelling_phi_flax

FlaxPhiAttention

Bases: BaseJAXAttentionModule

Multi-headed attention from 'Attention Is All You Need' paper

Source code in src/python/easydel/modules/phi/modelling_phi_flax.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
class FlaxPhiAttention(BaseJAXAttentionModule):
    """Multi-headed attention from 'Attention Is All You Need' paper"""
    config: PhiConfig
    layer_idx: Optional[int] = None
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[jax.lax.Precision] = jax.lax.Precision("fastest")

    def setup(self):
        config = self.config
        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.partial_rotary_factor = config.partial_rotary_factor
        self.is_causal = True

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )

        dense_class = functools.partial(
            Linear,
            use_bias=True,
            precision=self.precision,
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
            **get_dot_general_by_bits(self.config.bits)
        )

        self.q_proj = dense_class(self.num_heads * self.head_dim)
        self.k_proj = dense_class(self.num_key_value_heads * self.head_dim)
        self.v_proj = dense_class(self.num_key_value_heads * self.head_dim)
        self.dense = dense_class(self.hidden_size)
        self.rotary_emb_dim = int(self.config.partial_rotary_factor * self.head_dim)
        self.qk_layernorm = config.qk_layernorm
        if self.qk_layernorm:
            self.q_layernorm = nn.LayerNorm(
                epsilon=config.layer_norm_eps,
                dtype=self.dtype,
                param_dtype=self.param_dtype,
                use_bias=True
            )
            self.k_layernorm = nn.LayerNorm(
                epsilon=config.layer_norm_eps,
                dtype=self.dtype,
                param_dtype=self.param_dtype,
                use_bias=True
            )

        self.attention_performer = AttentionModule(
            use_sharding_constraint=self.config.use_sharding_constraint,
            block_k_major=self.config.block_k_major,
            block_b=self.config.block_b,
            block_q=self.config.block_q,
            block_k=self.config.block_k,
            block_q_major_dkv=self.config.block_q_major_dkv,
            block_k_major_dkv=self.config.block_k_major_dkv,
            block_k_major_dq=self.config.block_k_major_dq,
            block_k_dkv=self.config.block_k_dkv,
            block_q_dkv=self.config.block_q_dkv,
            block_q_dq=self.config.block_q_dq,
            block_k_dq=self.config.block_k_dq,
            num_attention_heads=self.config.num_attention_heads,
            attention_dropout=self.config.attention_dropout,
            head_dims=self.head_dim,
            attention_partition_spec=self.config.attention_partition_spec,
            shard_attention_computation=self.config.shard_attention_computation,
            precision=self.precision,
            force_float32_tpu=True,
            attn_mechanism=self.config.attn_mechanism,
            dtype=self.dtype,
            bias_partition_spec=self.config.bias_partition_spec,
            key_partition_spec=self.config.key_partition_spec,
            query_partition_spec=self.config.query_partition_spec,
            generation_query_partition_spec=self.config.generation_query_partition_spec,
            generation_bias_partition_spec=self.config.generation_bias_partition_spec,
            generation_attention_partition_spec=self.config.generation_attention_partition_spec,
            value_partition_spec=self.config.value_partition_spec,
            scan_ring_attention=self.config.scan_ring_attention,
            mesh=self.config.jax_mesh(),
            sm_scale=1 / math.sqrt(self.head_dim),
            axis_name=self.config.attention_axis_name,
            backward_pass_impl=self.config.flash_attention_backward_pass_impl
        )

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))

    @staticmethod
    def _transpose_sequence_head(query_states, key, value):
        """
        The _transpose_sequence_head function transposes the query_states, key and value matrices.

        :param query_states: Get the attention weights for each of the heads
        :param key: Determine the number of heads
        :param value: Store the values of the input
        :return: The transpose of the query_states, key and value matrices

        """
        return jnp.transpose(query_states, (0, 2, 1, 3)), jnp.transpose(key, (0, 2, 1, 3)), jnp.transpose(value,
                                                                                                          (0, 2, 1, 3))

    def apply_rotary(self, batch_size, sequence_length, query, key, value, freq_cis, position_ids):
        """
        The apply_rotary function is a modified version of the apply_attention function in the BertModel class.
        The main difference is that it takes in an additional argument, freq_cis, which are used to calculate
        the rotary attention weights. The other differences are minor and mostly related to reshaping tensors.

        :param self: Access variables that belong to the class
        :param batch_size: Reshape the query_states, key and value tensors
        :param sequence_length: Reshape the query_states, key and value tensors
        :param query: Calculate the attention weights
        :param key: Calculate the attention
        :param value: Compute the attention weights
        :param freq_cis: Calculate the frequency of each word in the vocabulary
        :param position_ids: Identify the position of each token in the sequence
        :return: A tuple of 3 tensors: query_states, key and value

        """
        query = query.reshape(
            batch_size,
            sequence_length,
            self.config.num_attention_heads,
            self.head_dim
        )
        key = key.reshape(
            batch_size,
            sequence_length,
            self.config.num_key_value_heads,
            self.head_dim
        )
        value = value.reshape(
            batch_size,
            sequence_length,
            self.config.num_key_value_heads,
            self.head_dim
        )

        query, key, value = self._transpose_sequence_head(query, key, value)

        sin, cos = freq_cis

        sin = sin[position_ids][:, None, :, :]
        cos = cos[position_ids][:, None, :, :]

        query_rot, query_pass = (
            query[..., : self.rotary_emb_dim],
            query[..., self.rotary_emb_dim:],
        )
        key_rot, key_pass = (
            key[..., : self.rotary_emb_dim],
            key[..., self.rotary_emb_dim:],
        )

        key_rot = apply_rotary_pos_emb(key_rot, sin, cos)
        query_rot = apply_rotary_pos_emb(query_rot, sin, cos)

        query = jnp.concatenate((query_rot, query_pass), axis=-1)
        key = jnp.concatenate((key_rot, key_pass), axis=-1)

        key = repeat_kv_bnsh(key, self.num_key_value_groups)
        value = repeat_kv_bnsh(value, self.num_key_value_groups)
        return self._transpose_sequence_head(query, key, value)

    def __call__(
            self,
            hidden_states: chex.Array,
            freq_cis: Tuple[chex.Array, chex.Array],
            attention_mask: Optional[chex.Array],
            position_ids: Optional[chex.Array],
            causal_mask: Optional[chex.Array],
            segment_ids: Optional[chex.Array] = None,
            deterministic: bool = True,
            output_attentions: bool = False,
            init_cache: bool = False,
    ):
        batch_size, sequence_length = hidden_states.shape[:2]
        (
            query_states,
            key_states,
            value_states
        ) = self.q_proj(
            hidden_states
        ), self.k_proj(
            hidden_states
        ), self.v_proj(
            hidden_states
        )

        if self.qk_layernorm:
            query_states = self.q_layernorm(query_states)
            key_states = self.k_layernorm(key_states)

        query_states = query_states.reshape(
            batch_size, sequence_length, self.config.num_attention_heads, self.head_dim
        )
        key_states = key_states.reshape(
            batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim
        )
        value_states = value_states.reshape(
            batch_size, sequence_length, self.config.num_key_value_heads, self.head_dim
        )

        query_states, key_states, value_states = self.apply_rotary(
            query=query_states,
            key=key_states,
            value=value_states,
            position_ids=position_ids,
            freq_cis=freq_cis,
            batch_size=batch_size,
            sequence_length=sequence_length
        )

        assert_msg = (
            "num_attention_heads repeat wont work likely\n"
            f"INFO :\n\trepeat_kv_bnsh Used with num_key_value_groups = {self.num_key_value_groups}\n\t"
            f"NH : {self.config.num_attention_heads} KVH : {self.config.num_attention_heads}"
        )

        assert query_states.shape[-2] == self.config.num_attention_heads, assert_msg
        assert key_states.shape[-2] == self.config.num_attention_heads, assert_msg
        assert value_states.shape[-2] == self.config.num_attention_heads, assert_msg

        query_length, key_length = query_states.shape[1], key_states.shape[1]

        if self.has_variable("cache", "cached_key"):
            mask_shift = self.variables["cache"]["cache_index"]
            max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
            causal_mask = lax.dynamic_slice(
                causal_mask, (0, 0, mask_shift, 0), (1, 1,
                                                     query_length, max_decoder_length)
            )
        else:
            causal_mask = causal_mask[:, :, :query_length, :key_length]

        batch_size = hidden_states.shape[0]
        causal_mask = jnp.broadcast_to(
            causal_mask, (batch_size,) + causal_mask.shape[1:])
        attention_mask = jnp.broadcast_to(jnp.expand_dims(
            attention_mask, axis=(-3, -2)), causal_mask.shape)
        attention_mask = combine_masks(attention_mask, causal_mask)
        if attention_mask.ndim == 2:
            attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))

        dropout_rng = None

        if not deterministic and self.config.attention_dropout > 0.0:
            dropout_rng = self.make_rng("dropout")

        if self.has_variable("cache", "cached_key") or init_cache:
            key_states, value_states, attention_mask = self._concatenate_to_cache(
                key_states,
                value_states,
                query_states,
                attention_mask
            )
        # if self.config.use_sharding_constraint:
        #     query_states = with_sharding_constraint(
        #         query_states, PartitionSpec(("dp", "fsdp"), "sp" if query_states.shape[1] != 1 else None, "tp", None)
        #     )
        #     key_states = with_sharding_constraint(
        #         key_states, PartitionSpec(("dp", "fsdp"), "sp", "tp", None)
        #     )
        #     value_states = with_sharding_constraint(
        #         value_states, PartitionSpec(("dp", "fsdp"), "sp", "tp", None)
        #     )
        attention_bias = lax.select(
            attention_mask > 0,
            jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
            jnp.full(attention_mask.shape, jnp.finfo(
                self.dtype).min).astype(self.dtype),
        )

        query_length, key_length = query_states.shape[1], key_states.shape[1]

        attentions = self.attention_performer.__call__(
            query_states=query_states,
            key_states=key_states,
            value_states=value_states,
            bias=attention_bias,
            attention_mask=attention_mask,
            causal=True,
            dropout_rng=dropout_rng,
            deterministic=deterministic,
            query_sequence_length=query_length,
            key_value_sequence_length=key_length,
            uses_cache=self.has_variable("cache", "cached_key") or init_cache,
            segment_ids=segment_ids,
            causal_mask=causal_mask
        )

        attn_output = self._merge_heads(attentions.attention_outputs)
        if self.config.shard_attention_computation:
            attn_output = with_sharding_constraint(
                attn_output, PartitionSpec(
                    ("dp", "fsdp"),
                    "sp" if attn_output.shape[1] != 1 else None,
                    "tp"
                )
            )
        attn_output = self.dense(attn_output)

        outputs = (attn_output, attentions.attention_weights) if output_attentions else (attn_output,)
        return outputs

apply_rotary(batch_size, sequence_length, query, key, value, freq_cis, position_ids)

The apply_rotary function is a modified version of the apply_attention function in the BertModel class. The main difference is that it takes in an additional argument, freq_cis, which are used to calculate the rotary attention weights. The other differences are minor and mostly related to reshaping tensors.

Parameters:

Name Type Description Default
self

Access variables that belong to the class

required
batch_size

Reshape the query_states, key and value tensors

required
sequence_length

Reshape the query_states, key and value tensors

required
query

Calculate the attention weights

required
key

Calculate the attention

required
value

Compute the attention weights

required
freq_cis

Calculate the frequency of each word in the vocabulary

required
position_ids

Identify the position of each token in the sequence

required

Returns:

Type Description

A tuple of 3 tensors: query_states, key and value

Source code in src/python/easydel/modules/phi/modelling_phi_flax.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def apply_rotary(self, batch_size, sequence_length, query, key, value, freq_cis, position_ids):
    """
    The apply_rotary function is a modified version of the apply_attention function in the BertModel class.
    The main difference is that it takes in an additional argument, freq_cis, which are used to calculate
    the rotary attention weights. The other differences are minor and mostly related to reshaping tensors.

    :param self: Access variables that belong to the class
    :param batch_size: Reshape the query_states, key and value tensors
    :param sequence_length: Reshape the query_states, key and value tensors
    :param query: Calculate the attention weights
    :param key: Calculate the attention
    :param value: Compute the attention weights
    :param freq_cis: Calculate the frequency of each word in the vocabulary
    :param position_ids: Identify the position of each token in the sequence
    :return: A tuple of 3 tensors: query_states, key and value

    """
    query = query.reshape(
        batch_size,
        sequence_length,
        self.config.num_attention_heads,
        self.head_dim
    )
    key = key.reshape(
        batch_size,
        sequence_length,
        self.config.num_key_value_heads,
        self.head_dim
    )
    value = value.reshape(
        batch_size,
        sequence_length,
        self.config.num_key_value_heads,
        self.head_dim
    )

    query, key, value = self._transpose_sequence_head(query, key, value)

    sin, cos = freq_cis

    sin = sin[position_ids][:, None, :, :]
    cos = cos[position_ids][:, None, :, :]

    query_rot, query_pass = (
        query[..., : self.rotary_emb_dim],
        query[..., self.rotary_emb_dim:],
    )
    key_rot, key_pass = (
        key[..., : self.rotary_emb_dim],
        key[..., self.rotary_emb_dim:],
    )

    key_rot = apply_rotary_pos_emb(key_rot, sin, cos)
    query_rot = apply_rotary_pos_emb(query_rot, sin, cos)

    query = jnp.concatenate((query_rot, query_pass), axis=-1)
    key = jnp.concatenate((key_rot, key_pass), axis=-1)

    key = repeat_kv_bnsh(key, self.num_key_value_groups)
    value = repeat_kv_bnsh(value, self.num_key_value_groups)
    return self._transpose_sequence_head(query, key, value)

FlaxPhiMLP

Bases: Module

Source code in src/python/easydel/modules/phi/modelling_phi_flax.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class FlaxPhiMLP(nn.Module):
    config: PhiConfig
    layer_idx: Optional[int] = None
    dtype: jnp.dtype = jnp.float32
    param_dtype: jnp.dtype = jnp.float32
    precision: Optional[jax.lax.Precision] = jax.lax.Precision("fastest")

    """Multi-Layer Perceptron.
    Reference:
        Attention Is All You Need.
        https://arxiv.org/pdf/1706.03762.pdf.
    """

    def setup(
            self
    ) -> None:
        self.fc1 = Linear(
            self.config.intermediate_size,
            kernel_init=nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision
        )
        self.fc2 = Linear(
            self.config.n_embd,
            kernel_init=nn.initializers.normal(self.config.initializer_range),
            dtype=self.dtype,
            param_dtype=self.param_dtype,
            precision=self.precision
        )
        self.act = ACT2FN[self.config.hidden_act]

    def __call__(
            self,
            hidden_states: Array,
            e: bool = False  # Ignored
    ) -> Array:
        return self.fc2(self.act(self.fc1(hidden_states)))

precision: Optional[jax.lax.Precision] = jax.lax.Precision('fastest') class-attribute instance-attribute

Multi-Layer Perceptron. Reference: Attention Is All You Need. https://arxiv.org/pdf/1706.03762.pdf.

FlaxPhiPreTrainedModel

Bases: EasyDeLFlaxPretrainedModel

Phi pre-trained model.

Source code in src/python/easydel/modules/phi/modelling_phi_flax.py
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
class FlaxPhiPreTrainedModel(EasyDeLFlaxPretrainedModel):
    """Phi pre-trained model."""
    module_class = None
    config_class = PhiConfig
    base_model_prefix = "transformer"

    def __init__(
            self,
            config: PhiConfig,
            dtype: jnp.dtype = jnp.float32,
            param_dtype: jnp.dtype = jnp.float32,
            precision: Optional[jax.lax.Precision] = jax.lax.Precision("fastest"),
            input_shape=(1, 1),
            seed: int = 42,
            _do_init: bool = False
    ) -> None:
        module = self.module_class(
            config=config,
            dtype=dtype,
            param_dtype=param_dtype,
            precision=precision
        )
        super().__init__(
            config=config,
            module=module,
            input_shape=input_shape,
            _do_init=_do_init,
            seed=seed
        )

    def init_cache(self, batch_size, max_length):

        input_ids = jnp.ones((batch_size, max_length))
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(
            jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        init_variables = self.module.init(
            jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
        )
        return init_variables["cache"]

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
        input_ids = jnp.zeros(input_shape, dtype="i4")
        attention_mask = jnp.ones_like(input_ids)
        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        module_init_outputs = self.module.init(rngs, input_ids, attention_mask)

        random_params = module_init_outputs["params"]

        if params is not None:
            random_params = flatten_dict(unfreeze(random_params))
            params = flatten_dict(unfreeze(params))
            for missing_key in self._missing_keys:
                params[missing_key] = random_params[missing_key]
            self._missing_keys = set()
            return freeze(unflatten_dict(params))
        else:
            return random_params

    def __call__(
            self,
            input_ids: chex.Array,
            attention_mask: chex.Array = None,
            position_ids: chex.Array = None,
            params: dict = None,
            past_key_values: dict = None,
            dropout_rng: jax.random.PRNGKey = None,
            train: bool = False,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = True,
            extra_embedding: Optional[Union[jnp.ndarray, None]] = None,
            add_params_field: bool = False,
            **kwargs
    ):

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        batch_size, sequence_length = input_ids.shape

        assert sequence_length <= self.config.max_position_embeddings, "Maximum Position Embedding Reached !"

        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        if self.config.bits is not None:
            rngs['params'] = jax.random.key(0)

        inputs = {"params": params or self.params} if add_params_field else params or self.params

        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        outputs = self.module.apply(
            inputs,
            input_ids=input_ids,
            inputs_embeds=None,
            attention_mask=attention_mask,
            position_ids=position_ids,
            extra_embedding=extra_embedding,
            deterministic=not train,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            init_cache=False,
            return_dict=return_dict,
            rngs=rngs,
            mutable=mutable,
        )

        if past_key_values is not None and return_dict:
            outputs, past_key_values = outputs
            outputs["past_key_values"] = unfreeze(past_key_values["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past_key_values = outputs
            outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]

        return outputs